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The Madelung Constants of Slices and Chains, with an Application
to the CdI, Structure

By P. HarTMAN
Kristallografisch Instituut, Rijksuniversiteit, Melkweg 1, Groningen, Netherlands

(Recetved 27 November 1957)

The Ewald expression for the electrostatic lattice energy is adapted to the calculation of this energy
in slices and chains. Application to the CdI, structure gives as a new value for the Madelung con-
stant of the Bozorth structure 4-382, of the Hassel structure 4-384 and of a (0001) slice 4-377.
The electrostatic attraction energy between the slices in the Bozorth structure amounts to —0-5
kcal.mol.~%, the repulsion energy +1-6 keal.mol.”! (based on Pinsker’s value of the total repulsion
energy). The van der Waals energy (—8-0 kcal.mol.7! according to Pinsker) far outweighs the

other energies.

Introduction

An expression for the Madelung constant of a chain
of ions has been given by Kleber (1939). Besides a
logarithmic term, it contains the Hankel cylinder func-
tion of order zero. The argument of this function is
proportional to the projection of the distance between
two ions on a plane, perpendicular to the chain direc-
tion. When this distance, and hence the argument,
approaches zero, the Hankel cylinder function ap-
proaches infinity, which makes the calculations very
unreliable and lengthy.

A different method was sought to obtain a function
that approaches zero, when the aforementioned dis-
tance approaches zero. The method of Ewald (1921)
for the calculation of Madelung constants furnished
formulas that possess the desired property.

The electrostatic energy of an ionic structure can be
represented by n
E = %Zl &1, ()

1=

when the ions are considered as point charges. Here
7 is the number of ions in the unit cell, ¢; is the charge
of the sth ion and ¢; is the electrostatic potential in
the site of that ion.
Ewald (1921) derived the following formulas for the
potential:
@i = Qu+@iz, (2)
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Here

V = volume unit cell,

A = arbitrarily chosen length,

Suuj = € exp 2mi (hx;+ky,;+1z;),

7;, = distance between the ions ¢ and g,

2 T

H(x) =—S exp (—#3)dt .
V7 do P

The summation in @i should not include the term

with » = &k =1 =0 and the summation in ¢ is to

be extended over all the ions in the infinite structure.

Electrostatic potential of an ion in a slicef})

This potential can be derived from the general ex-
pression in the following way.

A unit cell is chosen in such a way that the @ and b
axes are parallel to the slice. Its origin is in the site
of the 7th ion.

For the sake of convenience we take the ¢ axis
perpendicular to the slice. In this case V = abc siny
and

1/d3y = h2a*®+ k2b** + 2hka*b* sin y* +12¢*2,

where the starred symbols denote reciprocal-lattice
elements.

The structure is now stretched out in the direction
of the ¢ axis, but the positions of the ions belonging
to the slice should remain fixed in space. The potential
of an ion in the slice is then obtained when ¢ becomes
infinite, or when c¢* becomes zero. So we have to cal-
culate
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+ The term slice was first used by Hartman & Perdok (1955)
to indicate a stoichiometric portion of a crystal structure that
is parallel to a lattice plane and that contains two or more
periodic bond chains. The term layer is used here exclusively
for a two-dimensional array of coplanar ions.
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In this formula we substituted z; = Z;c*, where Z;
is the distance of the jth ion to a plane parallel to the
slice and going through the ith ion.

Further we substitute

A% = n? 22 (h2a*®+ k2b*2 + 2hka*b* sin y*) . (6)
At the limit ¢* = 0 the summation over I changes
into an integral:
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Here Spi; stands for & exp 27 (hay+ky;).
Now we put u = mAlc*. With this substitution,

c* disappears from the integral, so that the limit is
the integral itself:

(7)
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This integral can be further evaluated (see Appen-
dix). We find
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The first summation over % and % in this formula
should not include the term with A = k = 0, which is
infinite. The omission of this infinite term does not
affect the value of the total electrostatic energy,
because they all cancel out in expression (1). The
second summation, which depends on Z;, includes
also the term with 2 = &k = 0.

Formula (4) still holds for the second part of the
potential (@ (slice)), so that the complete potential is
the sum of (9) and (4).

If 1 is given such a value that A2 > 14 for all terms
with either h == 0 or k =% 0, then these terms are
negligible (smaller than 10-%) and the expression (9)
reduces to

@i (slice; A% > 14) -
2= "e
absin y =1 o1 (2p—1) p!

. (10)
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The j-dependent part in (10) represent the term in
(9) for which » =k = 0.
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Electrostatic potential of an ion in a chain

An expression for this potential is obtained in much
the same way as in the case of a slice. We take a
Cartesian set of axes, of which the a axis runs parallel
to the chain. The origin is in the site of the ¢th ion.
The potential is then derived from expression (3), by
taking the double limit with ¢ - co and b - o or
with ¢* — 0 and * — 0.

Taking into account that V = abc and that 1/d3,; =
h2a*?+ k2b*% +[2¢*?, and substituting gy; = Y;p* and
z; = Zjc*, we obtain
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The limit is approximated by the double integral
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We substituted
Sr; = & exp (2mthxy) .
Now put

B = niha* . (13)

Change of variables by taking w« = zAkb* and
v = mAlc* does remove b* and c* from the integral,
so that the limit equals the integral:
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This double integral can be reduced (see Appendix),
and we obtain

] + n
@i(chain) = —— 3 38, Bi(—-B?)

h=—00 j=1
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x So Bl YTy (15)

in which R} = Y;+Z;.
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The first summation over 4 in (15) should not in-
clude the term with % = 0.

If 1is given such a value that B? > 14 for & = 1,
the expression (15) contains only the term with
h =0 and it reduces to
@i(chain; B? > 14)

Do (=1)P [Rp* 2
EoZvemli) —a

The second part of the potential (@sa(chain)) is still
represented by formula (4). The sum of (4) and (15)
gives the total potential.

The final formulas (9) and (15) have the same struc-
ture: in both cases the first summation minus the
constant term 2g/A)/7 represents the potential in a
slice, where all ions are located in the same mathemat-
ical plane and the potential in a straight chain,
respectively. The second summation is a correction
for those cases in which not all Zy’s and Ry’s are zero.

_1 16
=2 (16)

The choice of A

The occurrence of the power series of Z;/A in formula
(9) and of R;/A in formula (15) puts a practical limit
on the choice of 4. To ensure a good convergence of
these series, 4 should be larger than 1-1 times the
maximum value of Z; or RB;. In that case the term with
p = 5 is about one-tenth of the term with p = 4, so
that at most 11 terms will give an accuracy of six
decimals.

Whenever possible A should be given a value that
makes A% or B? > 14 (cf. equations (10) and (16)).
This gives the desirable condition 4 > 1:2/a*.

On the other hand the number of terms involved
in the calculation of ¢:2 is small when A is small.
A particular condition for the choice of A cannot be
given because the number of different terms depends
on the symmetry and on the number of ions in the
asymmetric unit.

Application to the CdI; layer lattice

Recently the interlayer bonding in this structure was
discussed by Holser (1956). The Madelung constant of
one slice (0001), consisting of two layers of iodine
atoms with a layer of cadmium atoms in between,
was calculated by the method of Hgjendahl (1938).
Holser found for this Madelung constant the value
4-457, which is higher than the Madelung constant of
the whole structure, evaluated by Pinsker (1943a) to
be 4-394. Pinsker calculated the potentials of the ions
separately for two values of 1 (see formulas (3) and
(4)). The two values of each of these potentials, which
should be exactly equal, showed differences of the
order of 0-3%. This may be due to rounding-off errors.
It was therefore decided to recalculate the Madelung
constant of CdI, with sufficient accuracy in order to
exclude computational and rounding-off errors.
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(a) The Madelung constant of the Bozorth Cdl, structure

The space group of this structure is P3m with Cd
in (0,0,0) and I in (3, %, %) and (%, %, @).

The cell dimensions are a = 4-240, ¢ = 6:855 A,
and the parameter v = } (Pinsker, 1941).

The Spry values were first summed over j and the
whole set of symmetrically equivalent 2kl values. Then

= 4 > eipn for two values of 1. For
1 1

we calculated E;

the calculation of E, = } Z g: @iz the necessary H(x)

values were taken from Tables of Probability Func-
tions (1941).

All calculations were carried out in six decimal places
on a desk calculating machine. From the crystal energy
E = E,+E,, in units e.2A-1, the Madelung constant
Ap was obtained by multiplication by the shortest
Cd-I distance (2-988 A). The result is:

with 4 = Ja, Ay = —4-381890,
with 1 = }ay2, Ay = —4:381890.

(0) The Madelung constant of the Hassel Cdl, structure

The space group of this structure is Pémc. Two Cd
atoms are in (%, %,2) and (%, 3, $+2), with z = 0.
Two I atoms are in the same positions with z =
and two other I atoms are in (0, 0, z) and (0, 0, §+2)
with z = §.

The lattice parameters are a=4-240 and ¢=13-710 A.
The values quoted for ¢ by several authors do not
agree. Therefore the ¢ axis was provisionally taken
twice the ¢ axis of the Bozorth structure. The result is:

with 4 = 3o, Ay = —4-384071 ,
with A = ay3, A, = —4-384074 .

(c) The Madelung constant of a (0001) slice

With A = 2a, all terms containing H(A4) in formula
(9) could be neglected, while five terms of the power
series of Z; had to be calculated. The calculation of the
@i2’s involved 54 different terms.

With 1 = 2a, again all terms containing H(A4) were
negligible, but now six terms of the power series had
to be calculated and 38 terms were needed for the gq
calculation.

The result is:

with 4 = 3a, 4, = —4-377467 ,
with A = %a, A; = —4-377461 .

(d) Discussion of the interlayer bonding

Contrary to Holser, we find that a weak electrostatic
attraction exists between the slices (0001) in the
crystal. The larger attraction is found in the Hassel
structure and it amounts to —0-73 kecal.mol.~1, For the
Bozorth structure it is —0-49 keal.mol.~%.

The repulsion energy between the slices is estimated
by assuming a 7710 function. The total repulsion
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energy By was calculated by Pinsker (1945) to be
+115 kcal.mol.~1, The part of it that is due to repul-
sion between the slices is denoted by B and is cal-
culated from the following equation:

B, 6r710
By 127104125104 120570 460710

Here r, =4-212 A, the distance between two
nearest I ions in adjacent layers; r, = 2-988 A, the
distance between neighbouring Cd and I ions; 73 =
r, = 4-240 A, the distance between nearest I ions and

nearest Cd ions in the same layer.
We find that

B, = +1:72 kcal.mol.~1.

A more refined treatment, in which Pinsker’s ex-
ponential form of the repulsion energy is used, gives
the value B; = +1-56 kcal.mol.7%.

The repulsion and attraction energies are thus found
to be very weak and of the same order of magnitude.
Hence for the interlayer bonding the van der Waals
energy must be mainly responsible; Pinsker (1943b)
estimated this energy to be —8-0 keal.mol.~1.

The author gratefully acknowledges the help of Dr
P. C. Sikkema (Mathematical Institute of this Univer-
sity) specially for pointing out the possibility to change
the limits (5) and (11) to the integral forms (8) and
(14), respectively.

APPENDIX
(1) Evaluation of the integral in formula (8)

+% exp (20Z;u[) exp (—u?)
L= S-oo i42+u2 du
o [Pexp (—u?) cos 2Z;u/2
=2 So YO du .

Expansion of the cosine in a series gives

*exp (—u?)

Il=2SO YO du
© (—1)P (2Z;\%P ® u®P exp (—u?)
o3 =2V (2% wrexp =¥y
* pé:l (2pY) < A ) So A*+u? “

A recurrence relation is valid for the last integral:

S°° u?P+2 exp (—u?) du

0 A% +u?
© %P exp (—u?)

du
0 A?+u?

o0
= S u?P exp (—uz)du—Azs
0

1.3.5...(2p—1)
BT

©u?P exp (—u?)

Vn—A2SO 2 . (1)

For p = 0 we obtain
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S°° exp (—u?) (18)

) {1-H(4)}
o A*ru? 4

du = %exp (42

Substitution of relations (17) and (18) gives (9).

(2) Evaluation of the double integral
in formula (14)

We put f = 2Y4/4 and g = 2Z;/1. Then

I S+°° S+°° exp #(fu+gv) exp (—u?—v?)
2 o A2 Ly2 o2

dudv ,

—00

dudv

I,=2 [Sw g“’ cos (fu-+gv) exp (—u2—2v?)
o Jo A4 u40?

N S°° S°° cos (fu—gv) exp (—u?—2?)
0 9o A2+u2+v2

du va . (19)

Now the cosines are expanded into series and polar
coordinates are introduced: # = rcosf and v =
rsin 0. After separation of the variables (19) changes
into

ol 3 @y exp (—1?)
=2 [zsodeso e ar

N ; S°°r2p+1 exp (—72) dr(é(_l)p
p:l 0 A%+7r? Jo (2p)!

x {(f cos 0+g sin 0)*”+ (f cos —g sin 6)27’}(16] . (20)

In the first integrals we substitute A%+7%2 = s and
obtain

;‘l 0 Xp (___7-?.) 7T 0 o=
9 g‘ g rexp{=r) 5. T 2 S ¢
wodG.O Yo di 5 eXp (4?) P ds

- —%exp (A2)Ei(—42) . (21)

The second integral over the function of r in (20} is
given a more convenient form by substituting ¢ = r%:

00 L2p+1 2
g ”_exp(_zlduég
Y0

A2 492
The integral (22) can be evaluated by means of a
recurrence relation:

P exp (—t)

dt .
o A2it

(22)

0 yp+1 _
g PTlexp ( t)dt
AN A2+¢
o ¢ exp (—t)
= P — —42\ == 7
SO t? exp (—f)dt—A4 SO 2257 dt
* P exp (—1)
= pl—A?2 .
P SO e 23)

For p = 0 we find
S°° exp (—1)

—dt = —exp (A¥) Ei(—A432).

o A+t 24)
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Finally, the last integral in (20) can be evaluated
by integrating each term separately. We find then

n

SE % {(f cos O+g sin 0)*+ (f cos 6 —g sin 6)*"} df
0 .

—-1)"=
~ e ey @)
Now we put Y7+Z} = R:, so that
fi+g® = 4}?72//12 . (26)

When all the expressions from (21) to (26) are sub-
stituted into (20) and this into (14) we obtain for-
mula (15).
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Prizisionsbestimmung der Gitterkonstanten von A'™BY-Verbindungen

Von G. GIESECKE UND H. PFISTER

Forschungslaboratorium der Siemens-Schuckertwerke AG, Erlangen, Deutschland

(Bingegangen am 24. Dezember 1957)

Precision cell dimensions of compounds of the type ATIBY have been determined from powder
photographs, using the asymmetric method of Straumanis. Without correction for refraction the

following values were obtained:

InSb: a = 6-47877+0-00005 A; InAs: a
GaSb: ¢ = 6-0954+0-0001 &;

6-0584+0-0001 A; —
GaAs: a = 5653400002 A; GaP: a = 5-450540-0001 A;

InP: a = 586875+0-0001 A;

AlSb: @ = 6-13554+0-0001 A .

The corrections for refraction are given.

Einleitung

Die im Zinkblende- (bzw. Wurtzit-) Gitter kristal-
lisierenden AB-Verbindungen aus Elementen der III.
und V. Hauptgruppe des periodischen Systems haben
durch die grundlegenden Arbeiten von Welker (1952,
1953) grosses Interesse fiir die Halbleiterphysik er-
langt. Dies fithrte dazu, dass Kristalle sehr hoher
Reinheit hergestellt wurden, und es soll im folgenden
iiber die Prizisionsbestimmung der Gitterkonstanten
von einigen durch besondere chemische und physika-
lische Methoden gereinigten A™BY-Verbindungen be-
richtet werden.

Verwendetes Probenmaterial

Die untersuchten Verbindungen wurden in unserem
Forschungslaboratorium von Dr O. G. Folberth durch
Zusammenschmelzen der Komponenten hergestellt.
Die Ausgangsstoffe hierfiir sind durch spezifische von

Dr G.Iwantscheff und Mitarbeitern ausgearbeitete
chemische Verfahren gereinigt worden. Ausserdem
wurden die Verbindungen noch durch Zonenziehen
nachgereinigt. Die von Dr E. Golling durchgefiihrte
Spektralanalyse der Proben liess keinerlei Verunreini-
gungen erkennen.

Durchfithrung der Gitterkonstantenbestimmung

Die Gitterkonstanten wurden aus Pulveraufnahmen
nach der asymmetrischen Methode von Straumanis
& Tevins (1940) bestimmt. Die Kamera hatte einen
Durchmesser von 57,3 mm. Die stibchenférmigen
Pulverpriparate waren 0,1-0,15 mm. dick. Sie sind
durch Aufbringen der zu untersuchenden Substanz
auf 0,05 mm. dicke Quarzglasfiden hergestellt worden.
Um Temperaturschwankungen wéhrend der Aufnahme
auszuschliessen, befand sich die Kamera in einem
Luftthermostaten, dessen Winde mit Wasser von kon-



